Note

An arabinoglucuronomannoglycan from the leaves of *Ornithogalum thyrsoides*

Wilfred T. Mabusela and Alistair M. Stephen*

Department of Chemistry, University of Cape Town, Rondebosch 7700 (South Africa)

(Received January 17th, 1990; accepted for publication, March 9th, 1990)

Several species of *Ornithogalum* (Hyacinthaceae, Asparagales)¹ are indigenous to the Southern and Western Cape regions of South Africa, and are cultivated for the cut-flower market here and abroad. The most common species, *O. thyrsoides*, has been studied with a view to isolating the pathogen Ornithogalum mosaic virus². Isolation procedures were complicated by the mucilaginous nature of the plant sap. The structure of the major polysaccharide associated with the mucilage, which was known to be degraded by a hemicellulase (from *Aspergillus niger*), is now described.

The water-soluble acidic polysaccharide from the leaves of O. thyrsoides, isolated from an aqueous extract by precipitation with acetone, was dialysed and purified by way of its cetyltrimethylammonium complex³. The polysaccharide (A) gave highly viscous aqueous solutions and had $[a]_{\rm p}-25^{\circ}$, the total uronic acid content was $\sim 39\%$ by weight⁴, and the constituent neutral sugars were Ara and Man in the molar ratio $\sim 5:7$. Combustion analysis indicated that no protein was present. Determination of the sugar composition by methanolysis of A, reduction of the resulting methyl esters of the uronic acid glycosides with NaBD₄, glycoside hydrolysis, and g.l.c.-m.s. of the derived alditol acetates⁵ showed that GlcA was the only uronic acid present.

Methylation analysis of A indicated that all of the Araf was non-reducing terminal and that the Manp was 2-linked. Similar analysis of lithium aluminium deuteride (LAD)-reduced, methylated A (RMA) and re-methylated RMA (MRMA) showed that $\sim 25\%$ of the GlcA was 4-linked and that the remainder was 3,4-disubstituted.

Mild hydrolysis of A (20mm trifluoroacetic acid, 100°, 8 h) removed most of the Ara, to yield a degraded product (B). The facile release of Ara indicated that the sugar was furanoid. The $[a]_D$ value of the released Ara showed it to be L, and the change in $[a]_D$ from -25° for A to $+7^\circ$ for B showed that the Araf residues were a. The uronic acid content ($\sim 55\%$ by weight) indicated approximately equimolar proportions for Man and GlcA, in addition to a small amount of Ara, in B. Methylation analysis of B,

^{*} Author for correspondence.

NOTE 333

involving LAD-reduction and subsequent re-methylation, revealed that all of the Man was 2-linked and almost all of the GlcA was 4-linked. In addition to the little 3,4-disubstituted GlcA, there was a corresponding amount of residual, terminal Araf. This result implies that the Araf groups were 3-linked to GlcA in A. Therefore, A must consist of a main chain of 2-linked Man and 4-linked GlcA, to which Ara is appended in the form of side groups. Such a main chain could be of the glucuronomannoglycan type found in naturally occurring polysaccharides⁶, wherein the sugar and uronic acid occur as alternating residues.

Aqueous solutions of B were considerably less viscous than those of A, thereby facilitating ¹H- and ¹³C-n.m.r. spectroscopy. In the ¹H-n.m.r. spectrum of B, the signal at δ 5.39 (bs) was attributed to H-1 of α -D-Manp, and that at δ 4.51 (d, J 6.7 Hz), with an integral value similar to that of the peak at 5.39, to H-1 of β -D-GlcpA. These assignments were in agreement with those reported by Percival et al. ⁷ for a glucuronomannoglycan derived from a polysaccharide isolated from the brown seaweed Lessonia nigrescens. However, the signal at δ 4.15 (bs) was assigned to H-2 (not H-3) of D-Manp on the basis of a COSY experiment. Furthermore, the signal at δ 3.42 (dd, J 7 and 8 Hz) was assigned to H-2 of D-GlcpA. The integral values of the H-1 signals of Man and GlcA indicated that the two sugars occurred in equal proportions.

The ¹³C-n.m.r. spectrum of *B* contained 12 major peaks (*cf.* ref. 7), the chemical shifts appearing slightly upfield (by ~ 2 p.p.m.) of those reported in the literature. C-1 of β -D-GclpA resonated at 102.44 p.p.m. and the peak due to C-1 of α -D-Manp was at 99.41 p.p.m. The signals at 61.16 and 172.93 p.p.m. were attributed to C-6 of Man and of GlcA, respectively.

Evidence for the alternation of the constituent sugars in B was provided by partial hydrolysis, which generated members of the homologous series $\rightarrow 4$)-[GlcA-(1 \rightarrow 2)-Manl_g-(1. The first two members of the series were available to us (courtesy of Mr. P. F. K. Eagles) as products of the partial hydrolysis of the gum exudate of *Hakea sericea* and were used as markers in the p.c. of hydrolysates of B. The appropriate function of $R_{\rm s}$ (Bate-Smith and Westall⁸) for the acidic products released, when plotted against d.p., gave the linear relationship expected of an homologous series. Mild hydrolysis of B (0.5_M trifluoroacetic acid, 100°, 4 h) gave components which appeared to be the monomer, dimer, and trimer according to their mobilities in p.c. [solvent (d)], but no higher oligomer could be detected. However, hydrolysis with 0.2m trifluoroacetic acid for 4 h at 100° released the first eight members of the homologous series [p.c., solvent (f)]. The latter conditions were adopted on a preparative scale, the duration of hydrolysis being extended to 6 h. Resolution of the products was less satisfactory by preparative p.c. From 240 mg of B, the following components (expected value of n, yield in brackets) were isolated: n = 1 (8 mg), 2 (34 mg), 3 (20 mg), 4 (24 mg), 5 (5 mg), and > 5 (102 mg). P.c. of the first five components indicated that, for n = 1-3, they were homogeneous, whereas they were mixtures for n = 4 and 5. Acid hydrolysis (0.5M trifluoroacetic acid, 100° , 20 h) of the fraction with n > 5 gave mannose and glucuronic acid (glucurone) in similar proportions together with the aldobiouronic acid (n = 1); no neutral disaccharide was detected at any stage of the hydrolysis of B.

NOTE NOTE

Identification of components with n=2 and 3 followed from the ¹H-n.m.r. data. In the region for anomeric protons, the dimer gave signals at δ 5.44 (J 2 Hz), 5.30 (J 2 Hz), 4.94 (s), 4.57 (J 8 Hz), and 4.55 (J 8 Hz), with integration ratios of 1.0:0.8:0.2:1.0:1.0. These signals were assigned to in-chain α -D-Manp, reducing end α -D-Manp and β -D-Manp, and end-group and in-chain β -D-GlcpA, respectively, in accord with those reported for the dimeric species. The suspected trimer gave the following signals for anomeric protons: δ 5.41 (s), 5.29 (J 2 Hz), 4.94 (s), 4.58 (J 8 Hz), and 4.54 (J 8 Hz) with integration ratios of 2.0:0.8:0.2:1.0:2.0. These results were as expected and it was concluded that B consists of a chain of alternating units of 2-linked α -D-Manp and 4-linked β -D-GlcpA.

Thus, polysaccharide A is a conventional glucuronomannoglycan, which has $\sim 75\%$ of the GlcA 3-substituted with L-Araf groups. The structure resembles those of mucilaginous polysaccharides isolated from *Drosera capensis*¹⁰ and *D. binata*¹¹, and of a polysaccharide from suspension-cultured cells of *Nicotiana tabacum*¹². A unique feature is the attachment of side groups to GlcA, but not to Man.

EXPERIMENTAL

Isolation and purification of polysaccharide A. — Leaves from Ornithogalum thyrsoides, harvested in November 1988, were homogenized in a Waring Blendor with distilled water, and the homogenate was pressed through muslin cloth in order to isolate the water-soluble material. Polysaccharide, precipitated by the addition of acetone (1 vol.), was re-dissolved and dialysed against water for 5 days. The non-dialysable portion, which had become cloudy, was centrifuged, and the supernatant solution was freeze-dried. The product, which contained Man, Ara, GlcA, and Gal residues, was freed of Gal by precipitation³ with Cetavlon, as described by Mabusela and Stephen¹³ with the exception that 3m NaCl was used instead of 2m. From 35 g of dry leaves, the yield of purified polysaccharide A was ~1.0 g (Found: C, 45.0; H, 5.9; N, 0.5%).

General procedures. — Analytical methods have been described¹³⁻¹⁵; in addition, solvent (f), 1-butanol-acetic acid-water (8:5:7) was used. The ¹³C-n.m.r. spectrum of B was measured at 70° and the COSY experiment was conducted at 80°; all measurements for B were on a Varian VXR-200 spectrometer. The oligouronic acids were examined on a Bruker WH 90 instrument.

ACKNOWLEDGMENTS

We thank the C.S.I.R. (Foundation for Research Development) for financial support, and Mr. Johan Burger (Department of Microbiology) for providing the leaves of O. thyrsoides.

REFERENCES

1 R. M. T. Dahlgren and H. T. Clifford, *The Monocotyledons: A Comparative Study*, Academic Press, London, 1982, p. 29.

335

- 2 J. T. Burger and M. B. von Wechmar, Phytopathology, 79 (1989) 385-391.
- 3 J. E. Scott, Methods Carbohydr. Chem., 5 (1965) 38-44.
- 4 N. Blumenkrantz and G. Asboe-Hansen, Anal. Biochem., 54 (1973) 484-489.
- 5 W. F. Dudman, L.-E. Franzén, J. E. Darvill, M. McNeil, A. G. Darvill, and P. Albersheim, Carbohydr. Res., 117 (1983) 141-156.
- 6 A. M. Stephen, in G. O. Aspinall (Ed.), The Polysaccharides, Vol. 2, Academic Press, New York, 1983, pp. 97-193.
- 7 E. Percival, M. F. Veregas Jara, and H. Weigel, Carbohydr. Res., 125 (1984) 283-290.
- 8 E. C. Bate-Smith and R. G. Westall, Biochim. Biophys. Acta, 4 (1950) 427-440.
- 9 J. L. Di Fabio, G. G. S. Dutton, and P. Moyna, Carbohydr. Res., 99 (1982) 41-50.
- 10 D. C. Gowda, G. Reuter, and R. Schauer, Carbohydr. Res., 113 (1983) 113-124.
- 11 D. C. Gowda, G. Reuter, and R. Schauer, Phytochemistry, 21 (1982) 2297-2300.
- 12 M. Mori and K. Katō, Carbohydr. Res., 91 (1981) 49-58.
- 13 W. T. Mabusela and A. M. Stephen, S. Afr. J. Chem., 40 (1987) 7-11.
- 14 W. T. Mabusela and A. M. Stephen, S. Afr. J. Chem., 42 (1989) 151-161.
- 15 W. T. Mabusela, A. M. Stephen, A. L. Rodgers, and D. A. Gerneke, *Carbohydr. Res.*, 203 (1990) 336-340.